skip to main content


Search for: All records

Creators/Authors contains: "Gilbert, M. Thomas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A high-quality Australian dingo genome gives a multithousand-year-old snapshot in the evolutionary history of dogs. 
    more » « less
  2. null (Ed.)
    Abstract Background Hi-C experiments couple DNA-DNA proximity with next-generation sequencing to yield an unbiased description of genome-wide interactions. Previous methods describing Hi-C experiments have focused on the industry-standard Illumina sequencing. With new next-generation sequencing platforms such as BGISEQ-500 becoming more widely available, protocol adaptations to fit platform-specific requirements are useful to give increased choice to researchers who routinely generate sequencing data. Results We describe an in situ Hi-C protocol adapted to be compatible with the BGISEQ-500 high-throughput sequencing platform. Using zebra finch (Taeniopygia guttata) as a biological sample, we demonstrate how Hi-C libraries can be constructed to generate informative data using the BGISEQ-500 platform, following circularization and DNA nanoball generation. Our protocol is a modification of an Illumina-compatible method, based around blunt-end ligations in library construction, using un-barcoded, distally overhanging double-stranded adapters, followed by amplification using indexed primers. The resulting libraries are ready for circularization and subsequent sequencing on the BGISEQ series of platforms and yield data similar to what can be expected using Illumina-compatible approaches. Conclusions Our straightforward modification to an Illumina-compatible in situHi-C protocol enables data generation on the BGISEQ series of platforms, thus expanding the options available for researchers who wish to utilize the powerful Hi-C techniques in their research. 
    more » « less
  3. null (Ed.)
  4. Abstract

    Genetic tools are increasingly used to identify and discriminate between species. One key transition in this process was the recognition of the potential of the ca 658bp fragment of the organelle cytochrome c oxidase I (COI) as a barcode region, which revolutionized animal bioidentification and lead, among others, to the instigation of the Barcode of Life Database (BOLD), containing currently barcodes from >7.9 million specimens. Following this discovery, suggestions for other organellar regions and markers, and the primers with which to amplify them, have been continuously proposed. Most recently, the field has taken the leap from PCR‐based generation of DNA references into shotgun sequencing‐based “genome skimming” alternatives, with the ultimate goal of assembling organellar reference genomes. Unfortunately, in genome skimming approaches, much of the nuclear genome (as much as 99% of the sequence data) is discarded, which is not only wasteful, but can also limit the power of discrimination at, or below, the species level. Here, we advocate that the full shotgun sequence data can be used to assign an identity (that we term for convenience its “DNA‐mark”) for both voucher and query samples, without requiring any computationally intensive pretreatment (e.g. assembly) of reads. We argue that if reference databases are populated with such “DNA‐marks,” it will enable future DNA‐based taxonomic identification to complement, or even replace PCR of barcodes with genome skimming, and we discuss how such methodology ultimately could enable identification to population, or even individual, level.

     
    more » « less
  5. null (Ed.)
  6. The ruminants are one of the most successful mammalian lineages, exhibiting morphological and habitat diversity and containing several key livestock species. To better understand their evolution, we generated and analyzed de novo assembled genomes of 44 ruminant species, representing all six Ruminantia families. We used these genomes to create a time-calibrated phylogeny to resolve topological controversies, overcoming the challenges of incomplete lineage sorting. Population dynamic analyses show that population declines commenced between 100,000 and 50,000 years ago, which is concomitant with expansion in human populations. We also reveal genes and regulatory elements that possibly contribute to the evolution of the digestive system, cranial appendages, immune system, metabolism, body size, cursorial locomotion, and dentition of the ruminants. 
    more » « less
  7. null (Ed.)
    Abstract High-quality and complete reference genome assemblies are fundamental for the application of genomics to biology, disease, and biodiversity conservation. However, such assemblies are available for only a few non-microbial species 1–4 . To address this issue, the international Genome 10K (G10K) consortium 5,6 has worked over a five-year period to evaluate and develop cost-effective methods for assembling highly accurate and nearly complete reference genomes. Here we present lessons learned from generating assemblies for 16 species that represent six major vertebrate lineages. We confirm that long-read sequencing technologies are essential for maximizing genome quality, and that unresolved complex repeats and haplotype heterozygosity are major sources of assembly error when not handled correctly. Our assemblies correct substantial errors, add missing sequence in some of the best historical reference genomes, and reveal biological discoveries. These include the identification of many false gene duplications, increases in gene sizes, chromosome rearrangements that are specific to lineages, a repeated independent chromosome breakpoint in bat genomes, and a canonical GC-rich pattern in protein-coding genes and their regulatory regions. Adopting these lessons, we have embarked on the Vertebrate Genomes Project (VGP), an international effort to generate high-quality, complete reference genomes for all of the roughly 70,000 extant vertebrate species and to help to enable a new era of discovery across the life sciences. 
    more » « less